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Abstract

Theoretical derivation of the minimum zone criteria of sphericity error based on the principle of minimum potential energy is proposed.
All the measured data points are enclosed by two concentric spherical surfaces between which a fictitious spring is assumed to be placed.
These two concentric spherical surfaces can be mathematically determined by five active data points. When the spring contracts, the
potential energy of the simulated mechanical system tends to reduce which yields two new concentric spheres with smaller radial separation
and new active data points. Finally, a stable state will be reached to the condition of minimum potential energy. The criteria conforming
to such a state can be derived. A direct search scheme to the global minimum solution is also proposed. The clearance between such two
concentric spherical surfaces is the minimum zone of spherical form error. © 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction

Sphericity is a kind of form error which is broadly used
in industry for the geometrical measurement of precision
balls. Any defects on the surface, such as surface roughness
and form error, may result in the life reduction, wear, and
run-out rotation. Therefore, effective and precise evaluation
of the sphericity is an important issue.

There are various kinds of form errors, such as straight-
ness, flatness, roundness, sphericity, and cylindricity. There
are also many kinds of evaluation techniques. Cheraghi [1]
formulated the straightness and flatness errors by nonlinear
optimization problems with a linear objective function and
nonlinear constraints. Wang [2] applied the theory of non-
linear constrained optimization to evaluate straightness,
flatness, roundness, and cylindricity. Kanada [3] computed
the minimum zone sphericity using iterative least squares
and the downhill simplex methods. Carr [4,5] proposed
minimum zone searching algorithms that solved a sequence
of linear problems and converged to the solution of the
nonlinear one. Huang [6,7] evaluated the minimum zone

straightness and flatness form error based on the control
line, or control plane, rotation scheme (CLRS or CPRS)
which could result in the exact solutions. In this article, we
have not only derived some lemmas for finding the criteria
of minimum zone sphericity error, but also proposed a fast
computational algorithm, starting from the least squares
result, which can direct search to the minimum zone state.

2. Mechanical model of minimum zone spherical
form error

A simulated mechanical system is used to model the
problem of minimum zone spherical form error. A group of
supports are fixed at positions of measured data points and
enclosed by two fictitious concentric semi-rigid spherical
surfaces. These supports are assumed to withstand compres-
sion only. The concentric semi-rigid spherical surfaces
should observe the law that they remain concentric and
spherical when deformed. A fictitious spring is assumed to
be placed between them, as shown in Fig. 1, and is the only
component of the mechanical system that can store the
elastic energy.

From the geometrical point of view, the degree of free-
dom of the system is five and there are five active supports
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at the same time. These five active supports are located at
the corresponding five measured points which are contacted
by the enclosing spherical surfaces. In other words, at least
five points must be in contact with the two enclosing con-
centric spherical surfaces. When the spring contracts, these
active supports will be replaced by new contact points and
the elastic energy of the system will tend to reduce. Finally,
it will reach a stable state of minimum potential energy. The
problem of the minimum zone spherical form error is then
transformed into the problem of minimum potential energy
of the simulated mechanical system. It can be stated as:
Minimizing the elastic potential energy

U 5
1

2
ku2 (1)

subjected to all supports (measured data points) enclosed by
the two concentric spherical surfaces. In Eq. (1),k is the spring
constant of the fictitious spring andu is its displacement.

3. Formulation of system equations

From the geometrical point of view, there are four modes
of concentric spherical surfaces: (1) Mode M4-1, four data
points on the outer sphere and the last data point on the
inner sphere; (2) mode M3-2, three data points on the outer
sphere and the other two data points on the inner sphere; (3)
mode M2-3, two data points on the outer sphere and the
other three data points on the inner sphere; (4) Mode M1-4,
one data point on the outer sphere and the other four data
points on the inner sphere. Assume the current active data
points areP1 to P5 and the active supports of the simulated
mechanical system are placed at these five positions respec-
tively. When these supports are released the free body
diagrams are shown in Fig. 2 in which reactions on the
active supports ofP1 to P5 areN1 to N5 respectively, andPi

is the corresponding point on the outer surface whenPi is on
the inner surface. Without the loss of generality, let the

center of the concentric sphere be the origin of the coordi-
nate system, the outer sphere be the unit sphere (radius
Ro51), and the radius of the inner sphere beRi (Ri 5 Ro/a
5 1/a,a . 1). Let the coordinates of these active data points
be P1(x1,y1,z1), P2(x2,y2,z2), P3(x3,y3,z3), P4(x4,y4,z4) and
P5(x5,y5,z5). For mode M4-1 the equilibrium equations of
reactions are:

OFx 5 0

N1x1 1 N2x2 1 N3x3 1 N4x4 2 N5ax5 5 0 (2)

OFy 5 0

N1y1 1 N2y2 1 N3y3 1 N4y4 2 N5ay5 5 0 (3)

OFz 5 0

N1z1 1 N2z2 1 N3z3 1 N4z4 2 N5az5 5 0 (4)

where(Fx 5 0, (Fy 5 0, (Fz 5 0 mean the sum of the
x ,y, and z components of all reactions should equal to zero
at equilibrium condition.

Let [Eq. (5)]

P95 5 ~x95, y95, z95! 5 a~x5, y5, z5! (5)

The corresponding data pointP95(x95,y95,z95) with respect to
P5 is on the outer unit sphere (shown in Fig. 2a). Assume
the center of these two concentric spheres and the inner
spherical surface are fixed and the outer spherical surface is
given an admissible virtual displacementdu. From the prin-
ciple of virtual work, we have

N1du 1 N2du 1 N3du 1 N4du 5 dS1

2
ku2D 5 kudu

N1 1 N2 1 N3 1 N4 5 ku 5 C $ 0 (6)

Similarly, Let the center of these concentric spheres and the
outer spherical surface be fixed and the inner spherical surface
be given an admissible virtual displacementdu. We have

N5du 5 dS1

2
ku2D 5 kudu

N5 5 ku 5 C $ 0 (7)

Combining Eq.(2) to (4) and (6), (7), the system equations
of mode M4-1 can be represented in matrix form as [Eq. (8)]

3
x1 x2 x3 x4 2 x95

y1 y2 y3 y4 2 y95

z1 z2 z3 z4 2 z95

1 1 1 1 0

0 0 0 0 1

45
N1

N2

N3

N4

N5

6 5 5
0

0

0

C

C

6 (8)

Similarly, from equilibrium equations and the principle of
virtual work we have the system equations of mode M3-2 as
[Eq. (9)]

Fig. 1. Mechanical model of minimum zone spherical form error problem.
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3
x1 x2 x3 2 x94 2 x95

y1 y2 y3 2 y94 2 y95

z1 z2 z3 2 z94 2 z95

1 1 1 0 0

0 0 0 1 1

45
N1

N2

N3

N4

N5

6 5 5
0

0

0

C

C

6 (9)

The system equations of mode M2-3 are [Eq. (10)]

3
x1 x2 2 x93 2 x94 2 x95

y1 y2 2 y93 2 y94 2 y95

z1 z2 2 z93 2 z94 2 z95

1 1 0 0 0

0 0 1 1 1

45
N1

N2

N3

N4

N5

6 5 5
0

0

0

C

C

6 (10)

The system equations of mode M1-4 are [Eq. (11)]

3
x1 2 x92 2 x93 2 x94 2 x95

y1 2 y92 2 y93 2 y94 2 y95

z1 2 z92 2 z93 2 z94 2 z95

1 0 0 0 0

0 1 1 1 1

45
N1

N2

N3

N4

N5

6 5 5
0

0

0

C

C

6 (11)

Solving the system equations for each mode, we obtain the
corresponding reactions on each support for each mode.

4. Theorem of minimum zone spherical form error

In a stable state, the reactions at all active supports must be
compression. If the reactions are tension then the spherical

Fig. 2. Free body diagrams of four modes of concentric spherical surfaces: a) Mode M4-1, b) Mode M3-2, c) Mode M2-3, d) Mode M1-4.
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surface and the support will separate and the system will
not be stable. In this article, the sign convention of the
reaction is positive for compression, and negative for
tension. In other words, for reactions that act on the outer
spherical surface with direction outward are positive and
reactions that act on the inner spherical surface with
direction inward are positive. It can be shown that when
all the active reactions are positive (i.e., compression),
the simulated mechanical system is in a stable state and
has minimum elastic potential energy.

Lemma 1: The simulated mechanical system is in a
stable state if all reactions at active supports are positive.

Proof:
Let the support at data point P on the concentric spherical

surfaces be released and replaced by the reactionN (shown
in Fig. 3) and all other supports remain unchanged.

By Castigliano’s first theorem [8] we have [Eq. (12)]

dU 5 NY z duY . 0 (12)

wheredU is the change of potential energy of the system
due to the displacementdu of the outer spherical surface at
P. For a stable system, the change of potential energy of the
system must be positive.

Because all supports must be enclosed by the two
concentric spherical surfaces. The direction of admissible
displacementduY must be outward if the released active
support is located at the outer spherical surface, and
inward if it is located at the inner spherical surface. From
Eq. (12), we can also conclude that reactionN and dis-
placementdu must have the same direction (i.e., reaction
N is positive). According to the above discussion, we
reach the conclusion that when all reactions are positive
(compression), any further deformation of the two con-
centric spherical surfaces will lead to the increase of
elastic potential energy of the system. In other words, if
all reactions are positive the system is then in a stable
state.

Lemma 2: Mode M4-1 and M1-4 are unstable.
Proof:
Let C 5 1 for convenience, then the system equations of

mode M4-1 are [Eq. (13)]

3
x1 x2 x3 x4 2 x95

y1 y2 y3 y4 2 y95

z1 z2 z3 z4 2 z95

1 1 1 1 0

0 0 0 0 1

45
N1

N2

N3

N4

N5

6 5 5
0

0

0

1

1

6 (13)

From Equation (13), we have N551, and this equation can
be simplified to [Eq. (14)]

3
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

1 1 1 1
45

N1

N2

N3

N4

6 5 5
x95

y95

z95

1
6 (14)

Let

D 5 3
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

1 1 1 1
4 D1 5 3

x95 x2 x3 x4

y95 y2 y3 y4

z95 z2 z3 z4

1 1 1 1
4 (15)

Expressing in vector form, Equation (15) becomes [Eq. (16)]

D 5 rY14 z nY234 and D1 5 rY54 z nY234 (16)

where

rY i 5 ~xi, yi, zi! or ~x9i, y9i, z9i!

rY ij 5 rY i 2 rY j

nY2345 rY24 3 rY34

and the last term of above refer to the normal of the plane
formed by points P2, P3, and P4. From the Cramer’s rule, we
have [Eq. (17)]

N1 5
D1

D
5

rY54 z nY234

rY14 z nY234
(17)

Fig. 3. Free body diagram with one active support released.

Fig. 4. Schematic diagram of Mode M4-1.
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From Equation (17), we conclude that the sufficient and
necessary condition forN1 . 0 is [Eq. (18)]

rY14 z nY234. 0 and rY54 z nY234. 0

or rY14 z nY234, 0 and rY54 z nY234, 0 (18)

This implies that P1 and P95 should be on the same side of
the plane formed by P2,P3,P4 (shown in Fig. 4). Similarly,
we can also conclude that [Equations (19), (20), (21)]

rY24 z nY314. 0, rY54 z nY314. or rY24 z nY314, 0,

rY54 z nY314, 0 (19)

rY34 z nY124. 0, rY54 z nY124. or rY34 z nY124, 0,

rY54 z nY124, 0 (20)

rY41 z nY321. 0, rY51 z nY321. or rY41 z nY321, 0,

rY51 z nY321, 0 (21)

According to the above relations, the necessary and
sufficient condition for N2 . 0 is that P2 and P95 should
be on the same side of the plane formed by P1,P3,P4; for
N3.0, P3 and P95 should be on the same side of the plane
formed by P1,P2,P4; and for N4.0, P4 and P95 should be
on the same side of the plane formed by P1,P2,P3. We
then have the following conclusion: the necessary and
sufficient condition for all reactions to be positive (com-
pression) is that the point P95 should be located inside the
tetrahedron formed by P1,P2,P3,P4. However, since
P1,P2,P3,P4,P95 are all on the same unit sphere, the con-
clusion made above is impossible. In other words, Modes
M4-1 is unstable. This situation can also be applied to
mode M1-4.

Lemma 3: Mode M3-2 is stable if and only if P94 and P95

are on the opposite sides of the plane formed by P1,P2,P3

and the line segment P94P95 intersects the triangle
DP1,P2,P3; Mode M2-3 is stable if and only if P1 and P2 are
on the opposite sides of the plane formed by P93,P94,P95 and
the line segment P1P2 intersects the triangle formed by
DP93,P94,P95.

Proof:
Let C51, then the system equations of mode M3-2 are

3
x1 x2 x3 2 x94 2 x95

y1 y2 y3 2 y94 2 y95

z1 z2 z3 2 z94 2 z95

1 1 1 0 0

0 0 0 1 1

45
N1

N2

N3

N4

N5

6 5 5
0

0

0

1

1

6 (22)

We have

N4 1 N5 5 1

N5 5 1 2 N4 (23)

Substituting Equation (23) into Equation (22) yields: [Eq. (24)]

3
x1 x2 x3 x95 2 x94

y1 y2 y3 y95 2 y94

z1 z2 z3 z95 2 z94

1 1 1 0
45

N1

N2

N3

N4

6 5 5
x95

y95

z95

1
6 (24)

Let [Eq. (25)]

D 5 3
x1 x2 x3 x95 2 x94

y1 y2 y3 y95 2 y94

z1 z2 z3 z95 2 z94

1 1 1 0
4 ,

D1 5 3
x95 x2 x3 x95 2 x94

y95 y2 y3 y95 2 y94

z95 z2 z3 z95 2 z94

1 1 1 0
4 ,

D2 5 3
x1 x95 x3 x95 2 x94

y1 y95 y3 y95 2 y94

z1 z95 z3 z95 2 z94

1 1 1 0
4

D3 5 3
x1 x2 x95 x95 2 x94

y1 y2 y95 y95 2 y94

z1 z2 z95 z95 2 z94

1 1 1 0
4 , D4 5 3

x1 x2 x3 x95

y1 y2 y3 y95

z1 z2 z3 z95

1 1 1 1
4
(25)

Expressing in vector form, Equations (25) become [Eq.
(26)]

D 5 2rY54 z nY231

D1 5 2rY54 z nY235

D2 5 2rY54 z nY315

D3 5 2rY54 z nY125

D4 5 2rY51 z nY231 (26)

where

rY i 5 ~xi, yi, zi! or ~x9 i, y9 i, z9 i!

rY ij 5 rY i 2 rY j

rnijk 5 rY ik 3 rY jk 5 ~rY 2 rYk) 3 ~rY j 2 rYk)

From the Cramer’s rule, we have [Equations (27), (28),
(29), (30)]
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N1 5
D1

D
5

rY54 z nY235

rY54 z nY231
, N2 5

D2

D
5

rY54 z nY315

rY54 z nY231

N3 5
D3

D
5

rY54 z nY125

rY54 z nY231
, N4 5

D4

D
5

rY51 z nY231

rYl54 z nY231 (27)

Case I: WhenrY54 z nY231 . 0

N1 . 0 if and only if rY54 z nY235. 0 (28)

N2 . 0 if and only if rY54 z nY315. 0 (29)

N3 . 0 if and only if rY54 z nY125. 0 (30)

N4 . 0 if and only if rY51 z nY231. 0 (31)

From Eqs. (28) to (31), we conclude that P94 should locate
on the spherical surface S123 as shown in Fig. 5.

Hence,

rY54 z nY231. rY51 z nY231. 0

1 . N4 . 0

From Equation (23), we have [Equations (32), (33), (34), (35)]

N5 5 1 2 N4 . 0

Case II. WhenrY54 z nY231 , 0

N1 . 0 if and only if rY54 z nY235, 0 (32)

N2 . 0 if and only if rY54 z nY315, 0 (33)

N3 . 0 if and only if rY54 z nY125, 0 (34)

N4 . 0 if and only if rY51 z nY231, 0 (35)

In this case, the solution that satisfies Eqs. (32) to (35)
does not exist.

From the above discussions, we can see that mode M3-2
is stable, and all reactions are positive if and only if P94 and
P95 are on the opposite sides of the plane formed by
P1,P2,P3, and the line segment P94P95 intersects the triangle
DP1P2P3. Similarly, mode M2-3 is stable if and only if P1

and P2 are on the opposite sides of the plane formed by
P93,P94,P95 and the line segment P1P2 intersects the triangle
DP93P94P95. These are the criteria for the minimum zone
condition of sphericity error.

5. Computational algorithm

Let’s call those five data points that determine the con-
centric spheres are active data points contained in the set S.
From Lemma 1, we know that the reactions act on the active
points should be positive. If any of these reactions is neg-
ative, it means that the potential energy can be further
reduced. In the other words, the data point of negative
reaction can be removed from the set S and new searched
data point should be added in such that they can form two
new concentric spheres having less potential energy. In
general, there may be more than one negative reaction in the
beginning of the search process. In this computational al-
gorithm, we only exchange one active point each time and
the data point which has the most negative reaction is
chosen to be removed from S. This state is called the

Fig. 5. Solution of case I of Mode M3-2.

Fig. 6. Generating new search direction: a) for Mode T1-3, b) for mode T2-2.
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transition mode. In the transition mode, we need to search
one more new data point to form concentric spheres having
less potential energy, by the use of the proposed search
scheme as described below.

The algorithm for finding the minimum zone sphericity
is as follows.

1. Compute the least squares solution of sphericity er-
ror, and find the outer and inner enclosing spherical
surfaces Co, Ci and the corresponding active data
points Po and Pi.

2. Randomly generate two virtual data points on the
inner surface Ci to form a temporary transition mode
T1-3.

3. Compute the plane equation and its normal vector
formed by those three inner active points.

4. Gradually move the current sphere center along the
above mentioned normal direction, up or down, as

Fig. 7. Distribution of data points of Table 1 on the a) X-Y plane, b) X-Z
plane, c) Y-Z plane.

Table 1
Sphericity data set and its result
(unit: mm)

No. X Y Z

1 0.81814 20.43615 20.38525
2 20.80885 20.53045 0.27905
3 0.03749 0.90643 20.42737
4 0.86935 20.27403 20.42518
5 20.50786 20.07441 0.86060
6 0.75348 20.67012 20.00610
7 0.05867 21.00773 20.00198
8 20.17486 0.60442 0.78297
9 0.71121 20.50123 20.50042

10 20.47493 20.51466 0.71992
11 0.06016 20.74129 20.67432
12 0.05337 0.02006 1.00515
13 0.29869 0.87920 0.38988
14 20.15488 20.86697 0.48585
15 0.38994 20.00060 20.92592
16 0.00776 0.73922 0.68741
17 0.62090 0.52006 20.59341
18 0.00952 20.03493 21.00376
19 20.44592 0.76584 20.47827
20 0.01069 0.99511 0.11265
21 20.93371 20.17351 20.33160
22 20.48121 20.69836 0.53717
23 0.50394 0.86933 0.03322
24 0.80924 0.07332 20.59398
25 0.84569 0.06876 20.53570
26 0.36179 20.07902 0.93410
27 20.78624 0.20326 20.59063
28 20.46529 0.69616 20.55167
29 20.93402 20.02267 20.35813
30 0.43016 0.49319 20.76122
31 20.46929 0.11501 0.88119
32 0.60788 20.41130 0.68580
33 0.70712 0.46598 0.53998
34 0.67398 20.38068 20.63956
35 20.06245 20.50544 0.86696
36 20.09577 0.96216 0.26433
37 0.29318 0.79379 0.54237
38 20.39873 20.68009 0.61867
39 20.30833 20.07805 0.94937
40 20.70424 20.64359 0.31476
41 0.67010 20.17187 20.72841
42 20.12359 20.70688 0.70559
43 20.09694 0.64820 20.75729
44 20.13014 0.04876 0.99815
45 20.28485 0.86262 20.43728
46 0.16745 20.11142 20.98603
47 0.00946 20.00746 1.00873
48 0.15374 20.33634 20.93141
49 20.44828 0.85926 20.25853
50 20.61673 20.28843 0.73859
Minimum zone error 7.660mm
Least squares error 8.486mm

71K.-C. Fan, J.-C. Lee / Precision Engineering 23 (1999) 65–72



shown in Fig. 6a, until the first new point is con-
tacted by the new concentric spheres determined by
this point and original four active points, forming
mode M2-3 or M1-4.

5. Compute the reactions of these five active points
with Eq. (10) for mode M2-3, or Eq. (11) for mode
M1-4, and discard one virtual point which has the
most negative reaction, forming mode T1-3 or T2-2.

6. If the current mode is T1-3, repeat Steps 3 to 5 to
discard the remaining virtual point.

7. If the current mode is T2-2, generate a new search
line which is the intersection of two planes perpen-
dicular to the inner line (P1P2) and the outer line
(P3P4) respectively, as shown in Fig. 6b. A new
active point will be found together with a new mode.

8. Compute the five reactions and discard the active
point having the most negative reaction, and search
a new point with current mode, T2-2, or T1-3, or
T3-1 (similar to T1-3).

9. Repeat Step 8 until all reactions are positive.
10. The final mode must be M2-3 or M3-2, and the

radial separation of the concentric spheres is the
minimum zone solution.

It should be noticed here that the search scheme of this
algorithm starts from the result of the least squares solution
which is already very close to the minimum zone solution. The
criterion of the minimum zone solution has been proven by the
three Lemmas in this paper. In addition, from the geometrical
point of view, we will never find two groups of concentric
spheres in space both conforming to the minimum zone crite-
rion. Therefore, the proposed algorithm can be guaranteed as
the global minimum zone solution.

6. Example

An example shown in Table 1 is illustrated to demonstrate
the criterion proposed in this research. Data points are gener-
ated randomly such that they are all located between two
concentric spherical surfaces of radii equal to 0.995 and 1.005,
respectively. The distribution of data points are shown in Fig.
7 with different projection views. The result is compared with
the least squares method and verified by comparing the actual
spherical form error. The actual spherical form error is found
by the exhausting search that examined all the possible com-
binations. After examining all the possible combinations for
data set in Table 1, we found that the solution is the same as
that in our approach. The minimum zone sphericity error is

7.66mm dominated by the mode M3-2 with data points 7, 16,
and 45 on the outer spherical surface and 20, 39 on the inner
one. With the use of the proposed direct search scheme we
need totally only five or six iterations to get the required
solution. The computer time for this example is only 1.3
seconds with a PC/486, DX-266.

7. Conclusions

An approach with minimum potential energy analogy to
the minimum zone solution of spherical form error is pro-
posed in this research. The problem of finding the minimum
zone sphericity error is transformed into the problem of
finding the minimum elastic potential energy of the corre-
sponding mechanical system. The minimum zone solution
can be justified by the proposed comprehensive criteria.

In this report, we have derived three lemmas to prove the
sufficient and necessary condition of the minimum zone
criteria. They could be implemented to solve the problem of
minimum zone sphericity error easily. A computer program
is developed which provides direct and rapid search algo-
rithm. This concept can also be extended to solve other
minimum zone form error problems. Actually, it is a unified
approach for finding minimum zone form errors, such as
straightness, flatness, roundness, sphericity, cylindricity,
etc. A series of reports in this respect will be forthcoming.
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